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Noise due to Pulse-to-Pulse Incoherence in
Injection-Locked Pulsed-Microwave
Oscillators. Part II— Effects of
Phase-Locking Dynamics

DAN G. ANDERSON, MIETEK LISAK, aNp P. THOMAS LEWIN

Abstract —The problem of noise due to partial pulse-to-pulse coherence
in phase-locked pulsed oscillators is investigated. In particular, the analysis
includes the dynamic time variation of the phase-locking process. The
signal-to-n{)ise ratio of such a system is found to increase as (y1)?2, where
v is the frequency locking bandwidth and = is the pulse length. This result
corrects a previous conjecture of an exponential dependence on yr.

1. INTRODUCTION

NJECTION LOCKING plays a doubly beneficial role

for oscillator systems by providing a stable output
frequency as well as by suppressing the inherent noise level
of the oscillator [1].

In addition to these well-known properties for a CW
oscillator system, injection locking also provides a stable
initial phase for pulsed systems. This has an important
noise-suppressing effect, since otherwise the randomness of
the initial phases for the individual pulses would give rise
to an excess noise, which could well prove the dominant
noise process for the output signal [2], [3].

In a previous work [3], we analyzed the importance of
pulse-to-pulse coherence for achieving high signal-to-noise
ratios in pulsed-oscillator systems. The effect of the phase-
locking process was modeled by assuming the initial phases
of the individual pulses to have a random variation, nor-
mally distributed with a phase spread ((A¢)?)/? around
the mean phase {(¢).

However, this approach neglected the fact that phase
locking is a dynamic process, which continuously, during
pulses, tends to improve the pulse-to-pulse coherence by
mapping an initial maximum phase spread of 27 on a
phase interval 2A¢(¢) which is shrinking in time towards
zero. Thus, a more detailed analysis of noise due to partial
pulse-to-pulse coherence should include the dynamics of
the phase-locking process. The purpose of the present work
is to provide such an analysis.
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II. REevVIEwW OF PREVIOUS RESULTS

If f(t) denotes the (complex) amplitude variation of a
single unit pulse, the total amplitude g(¢) for a pulsed
system consisting of (2N +1) pulses can be written

+N

g()="X f(t—kT)exp(i,) . (1)

k=-N

where T is the pulse repetition time and ¢, denotes the
phase of the kth pulse. In our previous study, we assumed
{¢,} to constitute a normal random process with an rms
phase spread (((A¢)2?))/% It was then shown that the
normalized power spectrum G,(w) could be obtained by
Fourier analyzing (1) together with a subsequent statistical
averaging. This yielded

6o(@)= Gy {16))

2
= [18o () + (1= p)]| F(w)] (2)
where G(w) and F(w) are the transforms of g(¢) and f(7),
respectively, and S;(w) is the coherent sampling function
1 sin*[(N+1/2)wT] 3)
(2N +1) ., wT ’

sin” ——
2

The weighting factor p is determined by the phase spread
as

So(‘*")=

p=exp(~((84)7)). (4

We emphasized that (2) provides a suggestive description
of the influence of partial pulse-to-pulse coherence on the
power spectrum by being a weighted mean of a completely
coherent part (uSy(w)) and a completely incoherent part

1—p).
III. PHASE-LOCKING DYNAMICS

However, the phases of the individual pulses actually
evolve in time according to the dynamic phase-locking
equation [1]

ﬁsfﬁ=Awo—YSin¢k(t) (5)
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where Aw, is the difference between the frequencies of the
locking signal and the free-running oscillator, and vy is the
maximum frequency offset for which locking can be
achieved. y is determined by the parameters of the oscilla-
tor together with the ratio of the amplitudes of the free-
running oscillator and the injected signal [1].

The characteristic locking phase ¢, is obtained from (5)
as

For simplicity, we will concentrate on the case of exact
resonance (Aw, = 0), when the stable locking phase
becomes ¢, = 0. The phase variation during the locking
process is obtained by solving (5), assuming an initial
phase ¢,. The solution becomes particularly simple for
small ¢,, viz., ‘

(1) = dexp (= v?). (6)
Equation (6) yields the dynamic time evolution of the
phases of the individual pulses during the locking process
towards the common phase ¢, = 0.

In the Appendix, we briefly discuss the consequences of
allowing for nonresonant locking processes and also the
quality of the exponential approximation of the phase-lock-
ing variation (6).

IV. POWER SPECTRUM IN THE PRESENCE OF
Dynamic PHASE LOCKING

When the phases of the individual pulses vary according
to (6), we can write the signal as, cf. (1)
g(t)=

Y Sk —kT) ()

k=-N
where

hi(1) = exp [ig exp (= v1)].

By taking the Fourier transform of (7), assuming a
rectangular unit pulse of length 7, and expanding 4,(¢) as
a power series in the variable i¢, exp(— v¢), we obtain the
(unaveraged) power spectrum as

+N

: |G(w) ‘2 _ k 1§—Ne_z(k—1),,,7~
i_ (_ldill;l!%n__!&)—.gn,m(w)lf'(w)lz (8)

where we have introduced the notation

8, m(0) = gu(w)gh() 9)

with

1—exp[—(iw+ny)r] 1
1—exp(—iwT) 1-iny/w

gn(w) = (10)

and F(w) is the spectrum of the rectangular unit pulse. In
order to proceed to the statistical averaging of |G(w)|?, we

21

note that the initial phases ¢, must be assumed to be
randomly distributed over the interval [— #, + #] with a
constant probability function p(¢.)=1/(27). Further-
more ¢, and ¢, are uncorrelated if k #1. Thus

mamn [ {(OT), i k#1
() = {<¢Z*m>, if k=1 (11)
and
0, if n is odd
(90 = nw?’ if n is even. (12)

The averaged power spectrum can again be suggestively
presented as a sum of a coherent and an incoherent part,
cf. (2). We find from (8) using (11) and (12)

6ol@)= Gy {16)l)

= [11(@)So(@)+ hy(w0) = hy(@)] | F(w) [ (13)

where

2
77'2k

hi(w) = l)kngk(w)

(14)

IM8

'ﬂ'2k

1" 2k +1)

2( D"( 2 21 (). (15)

Equations (13)—-(15) constitute the proper generalization of
our previous results to include dynamic phase locking.

hy(w)=

IMS

V. SIGNAL-TO-NOISE RATIO FOR STRONGLY
PHASE-LOCKED PULSED SYSTEMS

Although the general result for the power spectrum
(13)—(15) is in a physically suggestive form, it is not very
explicit, in view of the complicated expressions for 4,(w)
and A,(w).

However, in two special limits, the power spectrum
degenerates into well-known forms. This fact also con-
stitutes a check on the results.

i) In the limit of y7 — 0, the phase-locking mechanism is
not operating and we should regain the completely incoher-
ent result.

When yr — 0, we obtain g,(w)—1 for all n and

_ (Si:")2= 0 (16)

which implies that the coherent part vanishes, cf. (13). For
ho(w), we find

hy(w) = }:( D

=0

o) ,E’o(_l)k(zljﬂ)!

(2k+1)' Z( ”(%)=1
(17

since the inner sum is zero, except for k=0 when it



22 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 1, JANUARY 1985

becomes equal to one. Thus, in the limit yr — 0, Gy(w) =
|F(w)|? ie., the completely incoherent result, as expected.

ii) In the limit yr — oo, phase locking is instantaneous
and we should regain the completely coherent result.

When yr — 0o, we obtain g,(w)=0for n # 0 and gy(w)
=1, which implies that h,(w)—1 and h,(w)—1. Thus,
the incoherent part of G,(w) vanishes and we regain the
completely coherent result Go(w)= Sy(w)|F(w)|?, as we
should.

Most technically important situations involving pulsed
phase-locked oscillators can be considered as strongly phase
locked in the sense that yr>1, ie., the characteristic
locking time, 1/v, cf. (6), is much less than the pulse
duration time 7. Typical values for certain modern pulsed-
radar transmitter systems could be y =100 MHz and 7 =~
800 ns, implying that y7 = 5Xx102,

In the case yr>1, gn(w) simplifies to (go(w)=1)

1

—_— n+0
nY 1—exp(—iwT)’

g.(w)= (18)

and we find that

wCg ol ( W )2 ct
1= S0t Gt 37 ) s (19
(@)= 2 2y ) sin®(w7/2) (19)
we T w \? c
hy(w) =1— 20 ot &5 4 (—) — 4 (0
() y 2 2y ) sin®*(wt/2) (20)

where the constants ¢, and ¢, are defined by

o= i—o: (__1)k+1 w

2k

2K)(2k +1)!
2k
k+1__ 7
-~ 21
with
121, 1
a2k—n(2—: ;;-I-E (22)
m=1
The series defining ¢, can be rewritter to yield
co=7Y,+In7m—1—Ci(n)=0.65 (23)

where v, is Euler’s constant and Ci(x) denotes the cosine
integral [4]. The series defining ¢, converges rapidly and
we find

¢, =0.60. (24)

Equations (19) and (20) imply that the incoherent contri-
bution to the power spectrum, in this limit, degenerates
into white noise with a level determined by

—¢ 02
2T2 - Y2Tz .

[h1(@) = hy(@)] [ F(o) [ = (25)

In particular, close to the main peak of the limit pulse
spectrum (w7 << 1), the signal-to-noise ratio S becomes

S =10Nvy?r? (26)

This shows that the conjecture in [3] of an exponential

increase with yr was too optimistic. Taking, as in [3],

N =6x10* and assuming y7 = 5X10?%, we obtain § = 92
dB.

Thus, our results demonstrate that partial pulse-to-pulse
coherence could be an important noise source, which may
well limit the performance of low-noise pulsed-oscillator
systems.

However, in this context it is appropriate to point out
that a major difference can be expected for the noise
properties of pulsed phase-locked oscillator systems, de-
pending on whether the locking signal is turned on before
or after the rising edge of the oscillator pulse. The results
presented in this paper are applicable to the case when the
locking signal is introduced when the oscillator signal has
reached its maximum flat top value. On the other hand, if
the locking signal is introduced before the rising edge of
the oscillator pulse, the effective locking bandwidth (being
proportional to the ratio of the amplitudes of the locking
and oscillator signals, respectively) is very large. This im-
plies that the phase locking becomes much more efficient
and that the noise level due to partial pulse-to-pulse
coherence is correspondingly reduced as compared to the
first case.

APPENDIX

In this Appendix, we will discuss two interesting points
raised by the reviewers.

i) The present analysis assumes that the phase-locking
dynamics can be described by an exponential decay to-
wards the locking phase value, cf. (5). This simple solution
is valid, provided that the initial phase does not deviate too
much from the final locking phase. Actually, this con-
tradicts the fact that we consider initial phases in the whole
interval [— 7, 7].

ii) The analysis only considers the case of exact reso-
nance Aw, =0, whereas most realistic situations are char-
acterized by Aw, # 0.

In order to discuss the consequences of relaxing these
limiting assumptions, we rewrite the phase-locking equa-
tion (5) as

dé
dr

where 7=yt and K = Aw, /.
We first consider the following case.

=K —sin¢g (A1)

Exact Resonance with Finite Initial Phases
Exact resonance requires K =0, in which case the full
solution of (A1), subject to the initial condition ¢(0) = ¢,.
is
_ ¢O —T
¢ =2arctan | |tan ~" |e (A2)
which should be compared to the approximate solution in
the limit of small ¢, i.e.,

¢=¢gexp(—1). (A3)
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Fig. 1. Phase-locking curves for large initial phases and A¢, = 0, exact
solution ( ), (A2), and approximate solution (----), (A3).

In Fig. 1, we compare the exact and approximate solutions
for two different and comparatively large initial phases.
The agreement is still very good at ¢, = 60°, has
deteriorated somewhat at ¢, =120°, and gets increasingly
bad as we approach ¢,=180°, the unstable stationary
value of (Al) for K =0. On the other hand, the time to
lock the phase to within, e.g., 10° of the final value does
not depend very strongly on the initial phase. Thus, our use
of an exponential phase-locking variation, although not
strictly valid for large initial phases, should be an accept-
able approximation, but should admittedly result in a
somewhat too optimistic estimate of the noise level.

Nonresonant Phase Locking

For nonresonant phase locking (0 <|K|<1), the solu-
tion of (A1) is given by [5] -

‘[ _ 2 —
¢—¢L=2{arctanll<——17<K—tanh(7———q—-9v1—K2)

)

where ¢, denotes the asymptotic locking phase, viz.,

—arctan| L _ VI=K*
arctan % K

retan | L - Y= K*
¢; = 2arctan X X

and 7, is an integration constant which is implicitly
determined by the initial phase ¢, as follows:

2
1 +1—I-{———tanh(%\/1—K2)].

K K

(A4)

¢y = 2arctan

(A5)
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Fig. 2. Nonresonant phase-locking curves K=1/2 ( ), K=1/4

(-x-Xx-) as compared to resonant phase locking K =0, exact solution
(----) and approximate (----).

In Fig. 2, we compare phase locking as given by (AS) for
different- K with the previous results for exact resonance
(K = 0) and the approximate exponential variation. It is
clearly seen that K =0 is not a necessary requirement for
the applicability of the present analysis, e.g.; for K =1/4
the phase-locking curve does not significantly deviate from
that of K = 0. Again, for large K and/or large initial phase
differences (¢, — ¢, ), the agreement deteriorates but we
can conclude that, well within the locking bandwidth, the
results for the noise levels should still be approximately
valid.
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Accurate Analysis Equations and Synthesis
Technique for Unilateral Finlines

PROTAP PRAMANICK AND PRAKASH BHARTIA, SENIOR MEMBER, IEEE

Abstract —Accurate analysis equations and synthesis techniques are
presented for unilateral finlines, valid over a wide range of structural
parameters and substrate dielectric constants (1 < ¢, < 3.75). These expres-
sions are usable for computing the cutoff wavelength to within +0.6
percent, the guided wavelength to within + 2 percent, and the characteristic
impedance (based on the power—voltage definition) to within +2 percent,
of the spectral-domain method, over the normalized frequency range
025<b/A<06.

1. INTRODUCTION

INLINE IS AN ideal transmission line for

millimeter-wave circuits because it avoids miniaturiza-
tion and offers the potential for low-cost production
through batch processing techniques [1], [2]. It is also easily
compatible with semiconductor devices. It has wide band-
width for single-mode operation, moderate attenuation,
and low dispersion in the frequency range of interest.
These properties have made it more popular than micro-
strip about 30 GHz.

Dispersion in finline has been accurately analyzed by
Hofmann [3], Knorr and Shayda [4], Schmidt and Itoh [5],
Beyer and Wolff [6], Sharma, Costache, and Hoefer [7],
Shih and Hoefer [8], and Saad and Schunemann [9]. These
analyses use the eigenmode analysis in space or the spec-
tral-domain, finite-element method, or a two-dimensional
transmission-line matrix. The network analytical method of
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electromagnetic fields, which is similar to the spectral-
domain technique, was extended to the more general case
of higher order modes by Hayashi, Farr, and Mittra [10].
Although the above-mentioned methods are highly accu-
rate, they require considerable analytical effort and lead to
complicated computer programming.

Besides the rigorous analyses above, the propagation
constant in finlines has been approximated by various
methods. Many authors have treated finlines as ridged
waveguides [11], [12]. But the resulting expressions are of
poor accuracy for the guided wavelength and the character-
istic impedance. For an adequately accurate expression for
the effective dielectric constant of finlines, one has to
depend on experimental data [1] from expensive and time-
consuming sample measurements. Therefore, in spite of all
the advantages of a novel transmission line, the basic
problem faced by the designers is the cumbersome design
procedure.

Consequently, there remains a strong need for accurate
closed-form expressions for the equivalent diclectric con-
stant and characteristic impedance for finlines. Recently,
Sharma and Hoefer [13] have presented purely empirical
expressions for the cutoff wavelength of unilateral and
bilateral finlines, which were developed by curve fitting to
numerical results obtained by the spectral-domain tech-
nique [7]. Because of their purely empirical nature, these
expressions are valid for a small range of finline geome-
tries. For example, the equations are valid for 1/16 < d /b
<1/4, b/a=05, and €, =222 and 3.00 only (see Fig.
1(a)). Moreover, different equations are required for dielec-
tric substrates of different permittivity values.
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