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Noise due to Pulse-to-Pulse Incoherence in
Injection-Locked Pulsed-Microwave

Oscillators. Part II—Effects of
Phase-Locking Dynamics

DAN G. ANDERSON, MIETEK LISAK, AND P. THOMAS LEWIN

Abstract —me problem of noise due to partial pulse-to-pulse coherence

in phase-locked puked oscillators is investigated. In particular, the anafysis
includes the dynamic time variation of the phase-loekirrg process. The

signaf-to-noise ratio of such a system is found to increase as (yT)2, where

y is the frequency lucking bandwidth and T is the pulse length. This result

correets a previous conjecture of an exponential dependence on yT.

I. INTRODUCTION

I NJECTION LOCKING plays a doubly beneficial role

for oscillator systems by providing a stable output

frequency as well as by suppressing the inherent noise level

of the oscillator [1].

In addition to these well-known properties for a CW

oscillator system, injection locking also provides a stable

initial phase for pulsed systems. This has an important

noise-suppressing effect, since otherwise the randomness of

the initial phases for the individual pulses would give rise

to an excess noise, which could well prove the dominant

noise process for the output signal [2], [3].

In a previous work [3], we analyzed the importance of

pulse-to-pulse coherence for achieving high signal-to-noise

ratios in pulsed-oscillator systems. The effect of the phase-

lock&g process was modeled by assuming the initial phases

of the individual pulses to have a random variation, nor-

mally distributed with a phase spread ((A@) 2)1/2 around

the mean phase (q).

However, this approach neglected the fact that phase

locking is a dynamic process, which continuously, during

pulses, tends to improve the pulse-to-pulse coherence by

mapping an initial maximum phase spread of 2 r on a

phase interval 2A@(t) which is shrinking in time towards

zero. Thus, a more detailed tialysis of noise due to partial

pulse-to-pulse coherence should include the dynamics of

the phase-locking process. The purpose of the present work

is to provide such an analysis.
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II. REVIEW OF PREVIOUS RESULTS

If ~(t) denotes the (complex) amplitude variation of a

single unit pulse, the total amplitude g(1) for a pulsed

system consisting of (21V + 1) pulses can be written

g(t)= ‘~N f(t–kl”)exp(i+~) , (1)
k=– N

where T is the pulse repetition time and ~~ denotes the

phase of the k th pulse. In our previous study, we assumed

{@~ } to constitute a normal random process with an rms
phase spread ((( A@)2))lz2. It was then shown that the

normalized power spectrum GO(u) could be obtained by

Fourier analyzing (1) together with a subsequent statistical

averaging. This yielded

‘0(’”) = (2 N1+1) (l@J)12)

=[pso(@)+(l-p)] lF(&l)/2 (2)

where G(LJ) and F(a) are the transforms of g(t) and j(t),

respectively, and SO(u) is the coherent sampling function

sinz [(~+ l/2)uT]

‘“(”) = (2 N1+1)
(3)

z UT
sin —

2

The weighting factor v is determined by the phase spread

as

P=exp(– ((@)2)). (4)

We emphasized that (2) provides a suggestive description

of the influence of partial pulse-to-pulse coherence on the

power spectrum by being a weighted mean of a completely

coherent part (pSo( w )) and a completely incoherent part
(1 – p).

III. PHASE-LOCKING DYNAMICS

However, the phases of the individual pulses actually

evolve in time according to the dynamic phase-locking

equation [1]

d+~(t)
—= Aao–ysin@k(t)

dt
(5)
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where Au. is the difference between the frequencies of the

locking signal and the free-running oscillator, and y is the

maximum frequency offset for which locking can be

achieved. y is determined by the parameters of the oscilla-

tor together with the ratio of the amplitudes of the free-

running oscillator and the injected signal [1].

The characteristic locking phase +~ is obtained from (5)

as

A(JO
sin~~.–—

Y“

For simplicity, we will concentrate on the case of exact

resonance ( ACJO= O), when the stable locking phase

becomes 0~ = O. The phase variation during the locking

process is obtained by solving (5), assuming an initial

phase +~. The solution becomes particularly simple for

small +~, viz.,

+k(~)=+kexp(–yt). (6)

Equation (6) yields the dynamic time evolution of the

phases of the individual pulses during the locking process

towards the common phase +~ = O.

In the Appendix, we briefly discuss the consequences of

allowing for nonresonant locking processes and also the

quality of the exponential approximation of the phase-lock-

ing variation (6).

IV. POWER SPECTRUM IN THE PRESENCE OF

DYNAMIC PHASE LOCKING

When the phases of the individual pulses vary according

to (6), we can write the signal as, cf. (1)

g(t) = y f(t–kT)lZk(t-kT) (7)
k=– N

where

h~(t)=exp [i~~exp(–yt)].

By taking the Fourier transform of (7), assuming a

rectangular unit pulse of length ~, and expanding h ~( t) as

a power series in the variable Z@kexp ( – yt), we obtain the

(unaveraged) power spectrum as

, IG(LIJ) 1’= ~N~-,(~-w-
k,l=– N

where we have introduced the notation

&,m(~)=g”(@)d(@)
with

(9)

note that the initial phases Ok must be assumed to be

randomly distributed over the interval [ – r, + m] with a

constant probability function p (c$~) = l/(27r ). Further-

more @k and $1 are uncorrelated if k #1. Thus

{

(M)(w)>
(M9Y}= ,/#)&+m)

ifk+l

ifk=l
(11)

9

and

k
o, if n is odd

(+;) = 77” (12)
if n is even.

n+l’

The averaged power spectrum can again be suggestively

presented as a sum of a coherent and an incoherent part,

cf. (2). We find from (8) using (11) and (12)

‘0(’”)= (2 N1+1) OG@O

= [h1(@o(LJ)+h2(c+ h1(u)]lF(@)\2 (13)

where

(14)

“ t (-om(qg’k-m,m(+ (m
~=o

Equations (13)–(15) constitute the proper generalization of

our previous results to include dynamic phase locking.

V. SIGNAL-TO-NOISE RATIO FOR STRONGLY

PHASE-LOCKED PULSED SYSTEMS

Although the general result for the power spectrum

(13)-(15) is in a physically suggestive form, it is not very

explicit, in view of the complicated expressions for hl( Q)

and h2(u).

However, in two special limits, the power spectrum

degenerates into well-known forms. This fact also con-

stitutes a check on the results.

i) In the limit of y~ ~ O, the phase-locking mechanism is

not operating and we should regain the completely incoher-

ent result.

When y~ ~ 0, we obtain g.(u)s 1 for all n and

(
2

)()
hl(~)+ E (–1)” ‘2k = *

2

(2k+l)!
= O (16)

k=O

which implies that the coherent part vanishes, cf. (13). For

h2(o), we find

l–exp[–(ia+ny)T] 1
g.(o) = (lo) hz(a)+ ~ (–l)k ~2k2:1), :O(-l)m(%)=l

l–exp(–iu~) 1 – iny/o k=O “ m—

and F’(o) is the spectrum of the rectangular unit pulse. In

order to proceed to the statistical averaging of IG ( o ) 12,we

(17)

since the inner sum is zero, except for k = O when it
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becomes equal to one. Thus, in the limit YT+ O, GO(U)=
lF(a) 12, i.e., the completely incoherent result, as expected.

ii) In the limit y~ -+ m, phase locking is instantaneous

and we should regain the completely coherent result.

When y~ ~ce, we obtain g.(a)= O for n # O and gO(u)

=1, which implies that hi(a) ~1 and hz(a) al. Thus,

the incoherent part of GO(co) vanishes and we regain the

completely coherent result GO(u) = SO(o) IF( @) ]2, as we

should.

Most technically important situations involving pulsed

phase-locked oscillators can be considered as strongi’y phase

locked in the sense that y~ >>1, i.e., the characteristic

locking time, l/y, cf. (6), is much less than the pulse

duration time ~. Typical values for certain modern pulsed-

radar transmitter systems could be y =100 MHz and ~ =

800 ns, implying that y~ = 5 X 102.

In the case y~ >>1, g.(a) simplifies to (gO(@) = 1)

1
gn(ti)==is n+ O (18)

nyl–exp(–i~T)’

and we find that

hl(@)=l–ycot++(~)2 c:
2y sin2 ( u~/2)

(19)

UT 2

lZ2(@)=l-y ~
()

cl
cot—+ ~

2y ~in2 (@./2)
(20)

where the constants COand c1 are defined by

c“=k:l(-l)k+l (2k);;+l)!

~2k

c’=k:l(-l)k+’ (2k+l)~2’

with

‘2=4%+4

(21)

(22)

The series defining COcan be rewritten to yield

where y. is

integral [4].

we find

co=yo+lnr –l– Ci(~) =0.65 (23)

Euler’s constant and Ci(x) denotes the cosine

The series defining c1 converges rapidly and

CI =0.60. (24)

Equations (19) and (20) imply that the incoherent contri-

bution to the power spectrum, in this limit, degenerates

into white noise with a level determined by

[hl(ti)-h2(ti)] lF(O)12=@=~. (25)

In particular, close to the main peak of the limit pulse

spectrum (u r << 1), the signal-to-noise ratio S becomes

s=loNy%2. (26)

This shows that the conjecture in [3] of an exponential

increase with y~ was too optimistic. Taking, as in [3],

2N = 6 X 104 and assuming y~ = 5 X 102, we obtain S =92

dB.

Thus, our results demonstrate that partial pulse-to-pulse

coherence could be an important noise source, which may

well limit the performance of low-noise pulsed-oscillator

systems.

However, in this context it is appropriate to point out

that a major difference can be expected for the noise

properties of pulsed phase-locked oscillator systems, de-

pending on whether the locking signal is turned on before

or after the rising edge of the oscillator pulse. The results

presented in this paper are applicable to the case when the

locking signal is introduced when the oscillator signal has

reached its maximum flat top value. On the other hand, if

the locking signal is introduced before the rising edge of

the oscillator pulse, the effective locking bandwidth (being

proportional to the ratio of the amplitudes of the locking

and oscillator signals, respectively) is very large. This im-

plies that the phase locking becomes much more efficient

and that the noise level due to partial pulse-to-pulse

coherence is correspondingly reduced as compared to the

first case.

APPENDIX

In this Appendix, we will discuss two interesting points

raised by the reviewers.

i) The present analysis assumes that the phase-locking

dynamics can be described by an exponential decay to-

wards the locking phase value, cf. (5). This simple solution

is valid, provided that the initial phase does not deviate too

much from the final locking phase. Actually, this con-

tradicts the fact that we consider initial phases in the whole

interval [ – 7T,m].

ii) The analysis only considers the case of exact reso-

nance AQO = O, whereas most realistic situations are char-

acterized by Au. # O.

In order to discuss the consequences of relaxing these

limiting assumptions, we rewrite the phase-locking equa-

tion (5) as

(Al)

where ~ = yt and K = AuO/y.

We first consider the following case.

Exact Resonance with Finite Initial Phases

Exact resonance requires K = O, in which case the full

solution of (Al), subject to the initial condition +(0)= +.,

is

(A2)

which should be compared to the approximate solution in

the limit of small +., i.e.,

+=+oexp(–~). (A3)
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Fig. 2. Nonresonant phase-locking curves K= 1/2 (—), K=l/4
(-x-x-) as compared to resonant phase locking K= O, exact solution
(-. -.) and approximate (----).
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Fig. 1. Phase-locking curves for large initiaf phases and A@O= O, exact In Fig. 2, we compare phase locking as given by (A5) for
solution (—), (A2), and approximate solution (----), (A3).

different K with the previous results for exact resonance

(K= O) and the approximate exponential variation. It is

clearly seen that K = O is not a necessary requirement for
In Fig. 1, we compare the exact and approximate solutions the applicability of the present analysis, e.g., for K =1/4
for two different and comparatively large initial phases. the phase-locking curve does not significantly deviate from
The agreement is still very good at @o= 60°, has that of K = O. Again, for large K and/or large initial phase

deteriorated somewhat at +0= 120°, and gets increasingly differences (+0 – +~), the agreement deteriorates but we

bad as we approach +0= 180°, the unstable stationary can conclude that, well within the locking bandwidth, the
value of (Al) for K = O. On the other hand, the time to results for the noise levels should still be approximately
lock the phase to within, e.g., 10° of the final value does valid.

not depend very strongly on the initial phase. Thus, our use

of an exponential phase-locking variation, although not

strictly valid for large initial phases, should be an accept- [1]

able approximation, but should admittedly result in a [2]
somewhat too optimistic estimate of the noise level.

Nonresonant Phase Locking

For nonresonant phase locking (O<

tion of (Al) is given by [5]

[3]

K I < 1), the solu-

[4]

{

4H7
@–+~=2 arctan~– ~ tanh(~=) “]

-arctan ;- ~ -(A3)
( )}

where OL denotes the asymptotic locking phase, viz.,

( 41-K2
@L=2arctan +– K

)
(A4)

and TO is an integration constant which is implicitly

determined by the initial phase @Oas follows:

[

4i-=F
+0= 2 arctan ++

K ( )]
tanh ~ ~= .

(A5)
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agation and microwave propagation.

Accurate Analysis Equations and Synthesis
Technique for Unilateral Finlines

PROTAP PRAMANICK AND PRAKASH BHARTIA, SENIOR MEMBER, IEEE

Abstract —Accurate analysis equations and synthesis techniques are

presented for unilateral finlines, valid over a wide range of structural

parameters and substrate dielectic constants (1 < C.< 3.75). These expres-

sions are usable for computing the cutoff wavelength to within *0.6

percent, the guided wavelength to within +2 percent, and the characteristic

impedance (based on the power-voltage definition) to within * 2 percent,

of the spectral-domain method, over the normafiied freqnency range
0.25< b/A< 0.6.

I. INTRODUCTION

F INLINE IS AN ideal transmission line for

millimeter-wave circuits because it avoids miniaturiza-

tion and offers the potential for low-cost production

through batch processing techniques [1], [2]. It is also easily

compatible with semiconductor devices. It has wide band-

width for single-mode operation, moderate attenuation,

and low dispersion in the frequency range of interest.

These properties have made it more popular than rnicro-

strip about 30 GHz.

Dispersion in finline has been accurately analyzed by

Hofmann [3], Knorr and Shayda [4], Schmidt and Itoh [5],

Beyer and Wolff [6], Sharma, Costache, and Hoefer [7],

Shih and Hoefer [8], and Saad and Schunemann [9]. These
analyses use the eigenmode analysis in space or the spec-

tral-domain, finite-element method, or a two-dimensional

transmission-line matrix. The network analytical method of
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P. Pramanick is with the Department of Electrical Engineering, Univer-
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electromagnetic fields, which is similar to the spectral-

domain technique, was extended to the more general case

of I&her order modes by Hayashi, Farr, and Mittra [10].

Although the above-mentioned methods are highly accu-

rate, they require considerable analytical effort and lead to

complicated computer programming.

Besides the rigorous analyses above, the propagation

constant in finlines has been approximated by various

methods. Many authors have treated finlines as ridged

waveguides [11], [12]. But the resulting expressions are of

poor accuracy for the guided wavelength and the character-

istic impedance. For an adequately accurate expression for

the effective dielectric constant of finlines, one has to

depend on experimental data [1] from expensive and time-

consuming sample measurements. Therefore, in spite of all

the advantages of a novel transmission line, the basic

problem faced by the designers is the cumbersome design

procedure.

Consequently, there remains a strong need for accurate

closed-form expressions for the equivalent dielectric con-

stant and characteristic impedance for finlines. Recently,

Sharma and Hoefer [13] have presented purely empirical

expressions for the cutoff wavelength of unilateral and

bilateral finlines, which were developed by curve fitting to

numerical results obtained by the spectral-domain tech-

nique [7]. Because of their purely empirical nature, these

expressions are valid for a small range of finline geome-

tries. For example, the equations are valid for 1/16 < d/b

G 1/4, b/a= 0.5, and c,= 2.22 and 3.00 only (see Fig.

l(a)). Moreover, different equations are required for dielec-

tric substrates of different permittivity values.
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